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ABSTRACT

Introduction: enterprise Human Resource Management (HRM), which tracks, evaluates, and improves 
employee performance, is essential to the expansion of a firm. However, conventional techniques like 
decision trees and linear regression frequently fall short in identifying intricate, non-linear relationships in 
employee data, which reduces their usefulness for making decisions in real time.
Objective: the research aims to develop an intelligent, accurate, and scalable model for forecasting 
employee performance using a hybrid Deep Learning (DL) approach called the Intelligent Water Drops Driven 
Dynamic Long Short-Term Network (IntWD-DynLSTN).
Method: a real-world HR dataset that includes employee information like task completion rates, training 
hours, attendance, and performance ratings is used to train the algorithm. Preprocessing included encoding 
categorical data, using Z-score normalization, and addressing missing values by imputation. High-level 
characteristics were extracted from the structured HR data using Convolutional Neural Networks (CNN). 
These attributes were subsequently fed into a Dynamic Long Short-Term Network (DynLSTN) to identify 
sequential patterns in monthly employee performance. Finally, model hyperparameters were adjusted using 
the Intelligent Water Drops (IntWD) technique to enhance generality and accuracy.
Results: experimental results show that the proposed IntWD-DynLSTN model achieves higher prediction accuracy 
(0,98), precision (0,97), recall (0,97), and F1-score (0,98) compared to traditional and baseline methods.
Conclusions: a scalable and dependable method for forecasting employee performance is provided by the 
suggested hybrid DL methodology. In dynamic organizational settings, it gives HR managers a strong tool for 
data-driven decision-making, facilitating quick interventions and efficient workforce management.

Keywords: Decision-Making; Employee Performance; Employee Data; Intelligent Water Drops Driven Dynamic 
Long Short-Term Network (IntWD-DynLSTN).

RESUMEN

Introducción: la gestión de recursos humanos (HRM) en la empresa, que realiza un seguimiento, evalúa y 
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mejora el rendimiento de los empleados, es esencial para la expansión de una empresa. Sin embargo, las 
técnicas convencionales, como los árboles de decisión y la regresión lineal, a menudo no logran identificar 
las relaciones complejas y no lineales en los datos de los empleados, lo que reduce su utilidad para la toma 
de decisiones en tiempo real.
Objetivo: la investigación tiene como objetivo desarrollar un modelo inteligente, preciso y escalable para 
pronosticar el rendimiento de los empleados utilizando un enfoque híbrido de aprendizaje profundo (DL) 
denominado Intelligent Water Drops Driven Dynamic Long Short-Term Network (IntWD-DynLSTN).
Método: para entrenar el algoritmo se utiliza un conjunto de datos de RR. HH. del mundo real que incluye 
información sobre los empleados, como las tasas de finalización de tareas, las horas de formación, la asistencia 
y las calificaciones de rendimiento. El preprocesamiento incluyó la codificación de datos categóricos, 
utilizando la normalización de la puntuación Z y abordando los valores perdidos mediante imputación. Se 
extrajeron características de alto nivel de los datos estructurados de RR. HH. utilizando redes neuronales 
convolucionales (CNN). Posteriormente, estos atributos se introdujeron en una red dinámica a corto y largo 
plazo (DynLSTN) para identificar patrones secuenciales en el rendimiento mensual de los empleados. Por 
último, se ajustaron los hiperparámetros del modelo utilizando la técnica Intelligent Water Drops (IntWD) 
para mejorar la generalidad y la precisión.
Resultados: los resultados experimentales muestran que el modelo IntWD-DynLSTN propuesto alcanza 
una mayor precisión de predicción (0,98), precisión (0,97), recuperación (0,97) y puntuación F1 (0,98) en 
comparación con los métodos tradicionales y de referencia.
Conclusiones: la metodología híbrida de aprendizaje profundo sugerida proporciona un método escalable y 
fiable para pronosticar el rendimiento de los empleados. En entornos organizativos dinámicos, ofrece a los 
responsables de recursos humanos una potente herramienta para la toma de decisiones basada en datos, lo 
que facilita intervenciones rápidas y una gestión eficiente de la plantilla.

Palabras clave: Toma de Decisiones; Rendimiento de los Empleados; Datos de los Empleados; Red Dinámica 
a Corto y Largo Plazo Impulsada por Intelligent Water Drops (IntWD-DynLSTN).

INTRODUCTION
The strategic approach to managing people in businesses to accomplish both individual and corporate goals is 

known as Human Resource Management (HRM).(1) To increase productivity and competitiveness, it encompasses 
hiring, training, development, and retention while coordinating worker performance with corporate goals. 
HRM encourages moral workplace conduct and makes sure labor rules are followed. It creates a motivated and 
effective workforce in the fast-paced world of today.(2,3,4) HRM began as clerical work but has now developed 
into a dynamic, data-driven field that focuses on leadership development, performance evaluation, and talent 
acquisition.(5,6,7)

Modern HRM systems monitor real-time performance metrics, attendance, and workforce trends, allowing 
organizations to respond quickly to change.(8,9,10) A strong HRM strategy encourages a positive work culture, 
diversity, satisfaction, and continuous learning.(9,11,12) Investments in employee training and fair practices 
support career growth and leadership development. HRM also improves collaboration, conflict resolution, and 
communication, serving as a vital driver of sustainability, innovation, and excellence in today’s knowledge-
based economy.(10,13,14)

The author recommended a hybrid model for enterprise Human Resource Management (HRM) risk prediction 
by integrating a Back Propagation Neural Network (BPNN) with an Improved Seagull Optimization Algorithm 
(ISOA) improved by the Whale Optimization Algorithm (WOA).(11,15,16) The work supported strategic HRM decision-
making in power supply enterprises using a hybrid approach combining Recurrent Neural Network (RNN), BPNN, 
CNN, and a Bayesian model.(12) The research suggested improving employee performance evaluation using a 
Hybrid Intelligent Algorithm (HIA) integrating Cognitive Computing (CC) and DL.(13,17,18) Associated with Key 
Performance Indicators (KPI), Support Vector Machine (SVM), Random Forest (RF), and Decision Tree (DT), HIA 
improved accuracy, fairness, speed, and employee satisfaction across complex datasets. 

The purpose of the research was to use the Placement-Assisted Resource Management Scheme (PRMS) 
to grow productivity and operational efficiency.(14) To maximize resource allocation, PRMS employed data-
driven matching between employee expertise and business tasks.(19,20,21) The work suggested enhancing stress 
management by predicting employee stress using DL through a Stress Classification Model (SCM) and Stress 
Regression Model (SRM).(15) The work recommended improving HRM efficiency by developing a Salary Prediction 
Model (SPM) using BPNN and AI.(16,22,23) The author suggested improving risk prediction in digital HRM using AI by 
integrating Risk Event Chains (REC), Risk Event Graphs (REG), and an Attention Fusion Module (AFM).(17,24,25) The 
research developed an early warning model for HRM risks using BPNN. It involved index system design and risk 
factor analysis.(18,26,27,28)
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The aim of this research is to develop an intelligent and scalable model for predicting employee performance 
accurately. It addresses the shortcomings of traditional techniques by effectively capturing complex, non-linear 
patterns in HR data. The proposed IntWD-DynLSTN hybrid model integrates DL and optimization techniques. 
This approach supports HR managers in making timely, data-driven workforce decisions.

METHOD
The methodology involves imputing missing values, applying Z-score normalization and label encoding, 

extracting features using CNN, modeling trends with DynLSTN, and optimizing hyperparameters using IntWD, 
as shown in figure 1.

Figure 1. Framework for Intelligent Employee Performance Prediction Using IntWD-DynLSTN

Data collection
The data is collected from the Enterprise HR Performance Dataset from the Kaggle link.(19) The dataset 

contains time-series data on tasks, training hours, attendance, and evaluations, as well as monthly HR records 
for 100 employees during one year. Additionally, it includes demographic information such as department and 
pay range. To facilitate classification, trend analysis, and practical HR decision-making with missing numbers, 
employees are categorized according to their performance levels.

Data Preprocessing
Handling Missing Values

Managing missing variables was crucial to improving the precision and dependability of HRM analysis in 
that research. Imputation techniques like mean, mode substitution, forward filling, and interpolation were 
used to fill in the missing data in attributes like training hours, ratings, and attendance. Conflicting records in 
categorical variables were eliminated, and the most frequent value was used to maintain data integrity.

Z-Score Normalization
Z-score Normalization is a widely used preprocessing technique in data analysis and ML to standardize 

numerical features, according to the following equation (1).
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Or mean value. It transforms the data by rescaling the values so that they have a mean of 0 and a standard 
deviation of 1.

Label Encoding
Categorical variables were transformed into numerical form using label encoding to enable effective 

model training. To maintain ordinal linkages, it was applied to HR variables such as job type, department, 
and performance level. By guaranteeing compatibility with the IntWD-DynLSTN model, this improved learning 
performance and prediction accuracy while also strengthening the model’s capacity to interpret categorical 
data. 

Feature Extraction
Convolutional Neural Networks

CNNs were utilized to extract abstract features from HR data such as task completion, training hours, and 
attendance. By transforming inputs into an appropriate format, CNNs detected local patterns and relationships 
between performance metrics through convolutional layers that apply filters to produce informative feature 
maps. The outcome of a convolution process can be expressed mathematically in equations (2-3) as follows:

𝑣𝑣𝑖𝑖
′ = 𝑣𝑣𝑖𝑖−𝐸𝐸

𝑠𝑠𝑠𝑠𝑠𝑠 (𝐸𝐸) (1) 

 

𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸) = √ 1
(𝑛𝑛−1) ∑𝑛𝑛

𝑖𝑖=1 (𝑣𝑣𝑖𝑖 − 𝐸𝐸)2
, 𝐸𝐸 = 1

𝑛𝑛 ∑𝑛𝑛
𝑖𝑖=1 𝑣𝑣𝑖𝑖  

 

𝐹𝐹𝑖𝑖,𝑗𝑗
(𝑘𝑘) = ∑𝑀𝑀

𝑚𝑚−1  ∑𝑁𝑁
𝑛𝑛−1   𝑋𝑋𝑖𝑖+𝑚𝑚+𝑗𝑗 ∙ 𝐾𝐾𝑚𝑚,𝑛𝑛

(𝑘𝑘) + 𝑏𝑏(𝑘𝑘)    (2) 

 

𝐴𝐴𝑖𝑖,𝑗𝑗
(𝑘𝑘) − 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝐹𝐹𝑖𝑖,𝑗𝑗

(𝑘𝑘)). (3) 

 

𝑓𝑓𝑠𝑠 =, (𝑊𝑊𝑓𝑓 ∙ [ℎ𝑠𝑠−1, 𝑚𝑚𝑠𝑠] +  𝑏𝑏𝑠𝑠)     (4) 

 

𝑖𝑖𝑠𝑠 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑠𝑠−1, 𝑚𝑚𝑠𝑠] +  𝑏𝑏𝑖𝑖), �̃�𝐶𝑠𝑠 = 𝑠𝑠𝑚𝑚𝑡𝑡ℎ(𝑊𝑊𝐶𝐶 ∙ [ℎ𝑠𝑠−1, 𝑚𝑚𝑠𝑠] +  𝑏𝑏𝐶𝐶)   (5) 
 

𝑃𝑃𝑖𝑖
𝑖𝑖𝑖𝑖𝑠𝑠(𝑒𝑒𝑖𝑖,𝑖𝑖+1

 (𝑘𝑘)) = 𝑓𝑓(𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠(𝑒𝑒𝑖𝑖,𝑖𝑖+1
 (𝑘𝑘))

∑1
𝑙𝑙=0 𝑓𝑓(𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠(𝑒𝑒𝑖𝑖,𝑖𝑖+1

 (𝑠𝑠))     (6) 
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Where Fi,j
(k) is the output feature map at position (i,j) for the Kth filter, X is the input data, K is the filter 

kernel, and b is the bias term. Activation functions like ReLU are applied after convolution to introduce non-
linearity. Pooling layers are used to reduce dimensionality and retain dominant features. The resulting features 
serve as input to the DynLSTN model for learning temporal performance trends.

𝑣𝑣𝑖𝑖
′ = 𝑣𝑣𝑖𝑖−𝐸𝐸
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This step helps the model to learn complex patterns by zeroing out negative values. The resulting activated 
feature maps are then passed on to pooling layers and later to the DynLSTN model for capturing sequential 
performance trends over time.

Enhancing Human Resource Management with a Hybrid Deep Learning Model IntWD-DynLSTN Approach
The proposed research uses a hybrid DL framework combining CNN, DynLSTN, and the IntWD algorithm. CNN 

extracts high-level features from structured HR data, while DynLSTN captures sequential patterns in employee 
performance. IntWD optimizes hyperparameters to boost model accuracy, making the IntWD-DynLSTN approach 
effective and scalable for real-world HR applications.

Dynamic Long Short-Term Network
Employee performance data can be analyzed using DynLSTN to identify sequential patterns that show how 

past actions, such as task completion, training, and attendance, impact present and future results. For better 
temporal modeling, it improves on conventional LSTN by dynamically updating memory using the forget gate, 
input gate, and cell state.

Equation (4) represents the gate that determines which past information should be discarded from the 
memory. It is defined by the equation:

𝑣𝑣𝑖𝑖
′ = 𝑣𝑣𝑖𝑖−𝐸𝐸
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𝑖𝑖𝑠𝑠 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑠𝑠−1, 𝑚𝑚𝑠𝑠] +  𝑏𝑏𝑖𝑖), �̃�𝐶𝑠𝑠 = 𝑠𝑠𝑚𝑚𝑡𝑡ℎ(𝑊𝑊𝐶𝐶 ∙ [ℎ𝑠𝑠−1, 𝑚𝑚𝑠𝑠] +  𝑏𝑏𝐶𝐶)   (5) 
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 (𝑘𝑘)) = 𝑚𝑚𝑖𝑖𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇𝑒𝑒𝑚𝑚𝑇𝑇𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠 (𝑒𝑒𝑖𝑖,𝑖𝑖+1
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Here, xt denotes the input vector at time t, and ht-1 is the hidden state from the previous time step. 
The weight matrix Wf and bias bt. Parameters are learned during training. The Softmax activation σ supports 
multiclass classification by producing output probabilities between 0 and 1 for performance levels like Excellent, 
Good, and Poor. Higher/Lower values indicate stronger/weaker confidence in assigning employees to specific 
performance categories.

Next, the input gate regulates what new information from the current input should be added to the memory. 
Equation (5) expressed as follows:

𝑣𝑣𝑖𝑖
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The variable it acts as a filter for new data, and, C ̃t  represents the applicant values for informing the cell 
state, obtained through the hyperbolic tangent function, which allows both positive and negative influences 
to be learned. DynLSTN effectively captures both long-term trends and short-term changes in employee 
performance. This enhances HR decision-making by identifying consistent patterns and improving the model’s 
overall accuracy and robustness.

Intelligent Water Drops (IntWD) optimization
The DynLSTN model’s weights are tuned using a continuous optimization method adapted from the discrete 

IWD approach. A binary encoding scheme represents real-valued weights, with two probabilistic paths (0 and 
1) at each decision node, enabling effective traversal and optimization in the neural network. The chance of 
choosing a path is calculated as follows:
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Equation (6) calculates the probability that an intelligent water drop (IWD) will select a particular path e(i,i+1)
(k) where k∈{0,1}. The function f(soil) reflects the desirability of a path based on the amount of “soil” on it. 
Paths with less soil are more likely to be chosen, simulating the natural erosion process.

Local soil is updated after each move to reflect learning:
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This equations (7-8) updates the soil level on a path after an IWD traverses it. A small portion of soil 
is removed, making the path more attractive in future iterations. The value 0,01 is a learning rate, and 
△soil(ei,i+1

(k)) is the soil removed per traversal, often defined by a fixed or adaptive rule.
After multiple iterations, global soil updating is applied to the best-performing solution path using:
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After all iterations are complete, the soil on paths in the best-performing solution (iteration-best path) 

is updated globally. This equation ensures the soil value stays within defined bounds [], preventing over-
exploitation or neglect of any path. This step reinforces optimal paths while maintaining solution diversity.

RESULTS
The performance of the suggested IntWD-DynLSTN model was evaluated and linked with traditional ML 

models, including Extra Trees and Gradient Boost using Python implementation. Metrics such as accuracy, 
precision, recall, and F1-score were used for benchmarking. The comparison highlights the superior predictive 
capability of the proposed hybrid model over existing methods.

Performance Analysis

Figure 2. Feature Correlation & Department-Wise Performance Trends in HR Metrics: (a) Feature Correlation Heatmap, 
(b) Department-wise Monthly
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Figure 3. Performance Trend Analysis and Departmental Role Mapping (a) Monthly Average Performance Score trend, (b) 
Sunburst Chart; Department Role-Performance Class

Comparison Analysis 
Accuracy reflects the overall correctness of performance predictions, while precision shows how many of 

the predicted high performers were actually high performers. Recall identifies actual high performers, and the 
F1 Score balances both metrics, offering a reliable measure in imbalanced HR datasets.

The objective of this research is to develop an intelligent and accurate model for predicting employee 
performance using HR data. Figure 4 and table 1 illustrate the Comparison of Model Performance Metrics for 
HRM Prediction by demonstrating that the proposed IntWD-DynLSTN model achieves higher accuracy (0,98), 
precision (0,97), recall (0,97), and F1-score (0,98) than traditional models like Extra Trees and Gradient Boost.
(20) These results validate the effectiveness of the proposed hybrid DL approach. It aligns with the research 
objective by offering a more reliable tool for data-driven HR decision-making.

Figure 4. Comparison of Model Performance Metrics for HRM Prediction

Table 1. Performance Comparison of HRM Prediction Models Using 
Evaluation Metrics

Methods
Metrics

Accuracy Precision Recall F1 Score

Extra Trees(20) 0,94 0,94 0,94 0,94

Gradient Boost(20) 096 096 096 096

IntWD-DynLSTN- [Proposed] 0,98 0,97 0,97 0,98

DISCUSSION
The intelligent, accurate, and scalable model was developed to predict employee performance by addressing 

the shortcomings of traditional ML techniques in managing complex, time-dependent HR data.(29,30,31) Methods 
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such as Extra Trees(20) often failed to capture sequential patterns and were susceptible to overfitting without 
proper tuning, while Gradient Boosting(20) despite offering better accuracy, proved computationally intensive 
and unsuitable for real-time applications.(32,33,34) These limitations were addressed through the integration 
of CNN for feature extraction, DynLSTN for learning temporal dependencies, and IntWD for optimizing 
hyperparameters. The hybrid IntWD-DynLSTN model achieved improved generalization, higher predictive 
accuracy, and adaptability to evolving organizational needs.(35,36)

CONCLUSIONS
A sophisticated and accurate model was developed to forecast employee performance using HR data. 

The comparison showed that the proposed IntWD-DynLSTN model outperformed traditional models like Extra 
Trees and Gradient Boost in terms of accuracy (0,98), precision (0,97), recall (0,97), and F1-score (0,98), 
thereby supporting this objective. These results demonstrated the effectiveness of the hybrid DL approach. 
The model contributed to more reliable, data-driven HR decision-making. However, to address limitations in 
generalizing across different organizations, future research could explore cross-domain adaptation and real-
time deployment.
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