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ABSTRACT

Introduction: efficient supply chain management (SCM) is crucial for increasing competitiveness, notably 
through improved member (supplier/partner) selection and operational decision-making. Traditional 
techniques frequently rely on manual evaluations or static rule-based systems, which have limited scalability, 
adaptability, and real-time data processing capabilities.
Objective: the goal of this research is to create an intelligent supply chain management (ISCM) framework 
that uses deep learning (DL) and metaheuristic optimization to improve supplier selection and overall 
operational efficiency.
Method: a real-world supply chain dataset from open source Kaggle, which includes supplier performance 
measurements, delivery schedules, demand forecasting, and transaction history. The dataset is preprocessed 
using min-max normalization. Feature extraction is utilizing Principal Component Analysis (PCA). This research 
proposes a Flying Fox Optimized Artificial Neural Network (FlyFO-ANN) method based on an Artificial Neural 
Network (ANN) network, which is suggested for predicting supplier reliability and demand fluctuations. In 
addition, a Flying Fox Optimization (FFO) is used to modify model hyperparameters and optimize member 
selection criteria. The proposed FlyFO-ANN model is evaluated against baseline methods. 
Results: the experimental results reveal a significant increase in accuracy (0,9233) compared to other 
methods. The proposed framework is more adaptable and efficient than existing methods. 
Conclusions: therefore, combining DL with intelligent optimization improves SCM decision-making by 
overcoming constraints in static approaches and enabling scalable, data-driven supply chain operations.

Keywords: Supply Chain Management (SCM); Flying Fox Optimized Artificial Neural Network (Flyfo-ANN); 
Member Selection; Operational Decision-Making; Deep Learning (DL); Intelligent Supply Chain Management 
(ISCM).
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RESUMEN

Introducción: una gestión eficiente de la cadena de suministro (SCM) es fundamental para aumentar la 
competitividad, especialmente mediante la mejora de la selección de miembros (proveedores/socios) y 
la toma de decisiones operativas. Las técnicas tradicionales suelen basarse en evaluaciones manuales o 
en sistemas estáticos basados en reglas, que tienen una escalabilidad, adaptabilidad y capacidad de 
procesamiento de datos en tiempo real limitadas.
Objetivo: el objetivo de esta investigación es crear un marco de gestión inteligente de la cadena de suministro 
(ISCM) que utilice el aprendizaje profundo (DL) y la optimización metaheurística para mejorar la selección 
de proveedores y la eficiencia operativa general.
Método: un conjunto de datos de la cadena de suministro del mundo real procedente de la fuente abierta 
Kaggle, que incluye mediciones del rendimiento de los proveedores, calendarios de entrega, previsión de la 
demanda e historial de transacciones. El conjunto de datos se preprocesa utilizando la normalización min-
max. La extracción de características se realiza mediante el análisis de componentes principales (PCA). Esta 
investigación propone un método de red neuronal artificial optimizada Flying Fox (FlyFO-ANN) basado en una 
red neuronal artificial (ANN), que se sugiere para predecir la fiabilidad de los proveedores y las fluctuaciones 
de la demanda. Además, se utiliza una optimización Flying Fox (FFO) para modificar los hiperparámetros del 
modelo y optimizar los criterios de selección de miembros. El modelo FlyFO-ANN propuesto se evalúa en 
comparación con los métodos de referencia. 
Resultados: los resultados experimentales revelan un aumento significativo de la precisión (0,9233) en 
comparación con otros métodos. El marco propuesto es más adaptable y eficiente que los métodos existentes. 
Conclusiones: por lo tanto, la combinación de DL con la optimización inteligente mejora la toma de decisiones 
en la gestión de la cadena de suministro, ya que supera las limitaciones de los enfoques estáticos y permite 
operaciones de cadena de suministro escalables y basadas en datos.

Palabras clave: Gestión de la Cadena de Suministro (SCM); Red Neuronal Artificial Optimizada Flying Fox 
(Flyfo-ANN); Selección de Miembros; Toma de Decisiones Operativas; Aprendizaje Profundo (DL); Gestión 
Inteligente de la Cadena de Suministro (ISCM).

INTRODUCTION
The supply chain (SC) encompasses manufacturing and distribution routes from suppliers to consumers, 

aiming to meet consumer demands, increase responsiveness, and build a network of partners.(1) Organizations 
are focusing on sustainability in supply chain management (SCM) to improve quality, service delivery, and 
resource efficiency, while integrating artificial intelligence (AI) and internet of things (IoT) for stable operations.
(2) AI enhances SCM through fuzzy logic and expert systems, improving decision-making and client relations 
through evaluation, technology, network reconfiguration, and process optimization.(3) Global Energy-Related 
Uncertainty Index (GEUI) and Global Supply Chain Pressure Index (GSCPI) are the two indications used for 
SCM. The GSCPI evaluates global SC conditions, while the GEUI represents global energy efficiency and supply 
dynamics issues.(4) Multi-echelon systems and communications in SCM can cause data to get confused and 
damaged, making it harder to forecast unexpected events or threats.(5) SCM systems struggle with accurate 
consumer demand estimation, but effective forecasting models can improve planning and operational efficiency 
by providing reliable insights for future demand forecasting and decision-making processes.(6)

SC agility is an organization’s capacity to quickly react to unanticipated disturbances while maintaining 
operations and customer satisfaction, to establish a competitive advantage by decreasing risks and capitalizing on 
opportunities.(7) Global sourcing and transportation networks are vital for businesses, with supplier performance 
affecting procurement efficiency. Poor deliveries can disrupt industrial processes, particularly for assembly-
based production.(8) SC visibility improvements involve surveying suppliers, using third-party databases, and 
Radio-Frequency Identification (RFID) technologies, but challenges like confidentiality and lack of reliable 
verification mechanisms persist.(9) A large manufacturing company developed a technique known as the SC 
Control Tower (SCCT) to construct an intelligent SCM (ISCM). In addition to innovations, SCCT encompasses 
interactions with the SCCT team and outside SC players. These socio-technical interactions were managed 
methodically to establish an ISCM.(10) Machine learning (ML) methods, such as support vector machine (SVM), 
random forest (RF) and extreme gradient boosting machine (XGBoost) were shown to provide correct forecasts, 
which increased the effectiveness of ISCM operations. In comparison to the other two models, XGBoost performs 
better in prediction.(11)

The IoT has made significant advances in the logistics industry, particularly in connectivity, service quality, 
and SCM. An ISCM system that allows SCM managers to make decisions for successful IoT-based transportation.
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(12) Conditional generative adversarial networks (CGANs) were dynamic SCMs used to address classification 
problems with large selection qualities and small observation samples, preserving classification accuracy while 
reducing information quantity and variety.(13) Geographic Information System (GIS) technology was utilized to 
optimize an ISCM logistics information system, enhancing efficiency by assisting in the creation of transportation 
routes, real-time worker and goods positions, and predicting arrival times.(14) The modified relational deep 
learning forecasting technique, seasonal auto-regressive integrated moving average, and light-gradient boosted 
machine (LightGBM) were used to accurately predict product demand, reducing prediction error.(15)

The research aims to develop an ISCM framework using deep learning (DL) and metaheuristic optimization to 
enhance supplier selection and operational efficiency. The framework utilizes the proposed Flying Fox Optimized 
Artificial Neural Network (FlyFO-ANN) method for predicting supplier reliability and demand fluctuations.
(16,17,18,19,20)

The remaining part of this research should be organized as follow: the next section explains the methodology, 
which comprises four components namely dataset, preprocessing, feature extraction and the proposed method. 
The subsequent sections present the result, discussion and conclusion.(21,22,23,24,25,26)

METHOD
The developed ISCM framework employed the proposed FlyFO-ANN for predicting supplier reliability and 

demand fluctuations with the help of SC dataset. The dataset undergoes the preprocessing process with min 
max normalization, and feature extraction using Principal Component Analysis (PCA). These processes are 
clearly explained in the section as well as illustrate in the outline process in figure 1.

Figure 1. Outline process of proposed methodology

Dataset
The SC dataset was obtained from the Kaggle dataset (https://www.kaggle.com/datasets/programmer3/

supply-chain-dataset). The dataset provides detailed insights into real-world SC operations in logistics and 
manufacturing industries, including supplier performance metrics, delivery patterns, demand forecasting 
indicators, and historical transactions.

Data Preprocessing and Feature Extraction
Min max normalization: to normalize the SC characteristics by translating values to the smallest values within 

a predetermined interval, allowing classification algorithms to handle quantitative features, and preserving 
supplier reliability connections. Equation (1) converts each value in the analysed characteristic into a new 
standardized value.
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𝑌𝑌𝑝𝑝×𝑞𝑞 = ( 𝑚𝑚11 ….𝑚𝑚1𝑞𝑞
:    ..   ∶ 𝑚𝑚𝑝𝑝1   ...   𝑚𝑚𝑝𝑝𝑞𝑞 )             (2) 

 

𝑌𝑌𝑗𝑗,𝑘𝑘
∗ = 𝑌𝑌𝑗𝑗,𝑘𝑘−𝜇𝜇𝑘𝑘

𝜎𝜎𝑘𝑘
, 𝑗𝑗 = 1,2, … , 𝑝𝑝; 𝑘𝑘 = 1,2, … , 𝑞𝑞   (3) 

𝜂𝜂𝑗𝑗 = 𝜆𝜆𝑗𝑗
∑𝑞𝑞

𝑗𝑗=1 𝜆𝜆𝑗𝑗
      (4) 

 

∅(𝑚𝑚) = 𝑚𝑚. 𝑔𝑔(𝑚𝑚)                (5) 
 

𝑔𝑔(𝑚𝑚) = 𝑇𝑇𝑚𝑚𝑛𝑛ℎ(𝑚𝑚) = 𝑒𝑒𝑚𝑚𝑝𝑝𝑎𝑎−𝑒𝑒𝑚𝑚𝑝𝑝−𝑎𝑎

𝑒𝑒𝑚𝑚𝑝𝑝𝑎𝑎+𝑒𝑒𝑚𝑚𝑝𝑝−𝑎𝑎.  

 

𝑌𝑌𝑗𝑗,𝑘𝑘
𝑢𝑢+1 = 𝑌𝑌𝑗𝑗,𝑘𝑘

𝑢𝑢 +∝ ∗ 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗,𝑘𝑘 − 𝑌𝑌𝑗𝑗,𝑘𝑘
𝑢𝑢 )      (6) 

𝑚𝑚𝑌𝑌𝑗𝑗,𝑘𝑘
𝑢𝑢+1 = 𝑌𝑌𝑗𝑗,𝑘𝑘

𝑢𝑢 + 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟1,𝑘𝑘 ∗ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗,𝑘𝑘 − 𝑌𝑌𝑗𝑗,𝑘𝑘
𝑢𝑢 ) + 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟2,𝑘𝑘 ∗ (𝑌𝑌𝑅𝑅1,𝑘𝑘

𝑢𝑢 − 𝑌𝑌𝑅𝑅2,𝑘𝑘
𝑢𝑢 )  (7) 

𝑌𝑌𝑗𝑗,𝑘𝑘
𝑢𝑢+1 = {𝑚𝑚𝑌𝑌𝑗𝑗,𝑘𝑘

𝑢𝑢+1, 𝑚𝑚𝑖𝑖 𝑘𝑘 = 𝑐𝑐 𝑐𝑐𝑟𝑟 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟3,𝑘𝑘 ≥ 𝑝𝑝𝑚𝑚 𝑌𝑌𝑗𝑗,𝑘𝑘
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𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑝𝑝𝑟𝑟𝑚𝑚𝑛𝑛𝑔𝑔 2 = 𝑁𝑁 ∗ 𝐶𝐶2 + (1 − 𝑁𝑁) ∗ 𝐶𝐶1    (11) 
 

Where the standardized value is ẃ, the initial value is w, and the highest value is maxb. A minb, represents 
the minimal value for a specific characteristic in SC. The variables new maxb and new minb reflect the highest 
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and lowest values for the current range predicting supplier reliability and demand fluctuations.
PCA: the PCA is a data augmentation technique that reduces initial supplier selection to speed up computation 

and increase the risk of excess fitting, while retaining most essential information.
The initial dataset Yp×q can be represented as a matrix with p rows and qcolumns, where p is the amount of 

samples and q is the number of variables in the SC dataset, as shown in equation 2.
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The prediction outcomes may be significantly influenced by the significant length variation in each SC input 
factor. The component Yp×q is standardized to employ the better use of PCA and transformed into a standardized 
matrix Y* according to equation 3.
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The standardized value is denoted as Yj,k*. μk and σk represent both the average and variance of the original 
SC data. Mp×q=Y*T Y* is the correlation matrix M. Equation 4 represents the effectiveness rate of each primary 
component (η).

Predicting Supplier Reliability and Demand Fluctuations Using Flying Fox Optimization-Artificial Neural 
Network (FlyFO-ANN) 

The FlyFO-ANN is a novel form of a DL model that brings together the predictive capabilities of ANN with 
the global surround of the FFO algorithm. ANN is used by the supplier reliability or demand prediction model in 
handling nonlinear data relationships. FFO hyperparameters are introduced into the ANN model based on the 
multi-objective selections. By partnering the ANN with an FFO at the hyperparameter and member selection 
phase, the model was improved concerning prediction performance, adaptively and implementation efficiency 
of the resulting assemblage into an ISCM framework. 

Artificial Neural Network (ANN): ANN is a unit for supplier selection and efficiency, consisting of multiple 
cells and a neuron. It serves as the foundation for a the function’s operation. ANNs come in various network 
architectures, such as single-layer nets with input components, one layer of measurements, and output modules, 
and multi-layer networks with input, hidden, and output components. The optimum architecture is chosen by 
finding the most effective mix of input and hidden components. However, there is no common approach for ANN 
modeling in terms of inputs, hidden layers, and nodes in each hidden layer for predicting supplier reliability 
and demand fluctuations.

ANN modeling employs several functions for activation, including the threshold parameter operation, step 
engagement function, exponential function, and tangent of hyper function (equation 5).
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Where g(a) is a tangent of hyper function.
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The ANN’s outcome is influenced by the weight of cell interactions, which are applied appropriately across 
neurons in different layers for ISCM.

Flying Fox Optimization (FlyFO): The FlyFO algorithm is a versatile optimization tool that effectively addresses 
the ISCM challenges by emulating the survival strategies of flying foxes (FF). It offers faster convergence 
and better regional and global exploration capabilities, focusing on FF migrant habits in hot zones and their 
starvation and death processes.

The FF moves (SC transportations) to the optimal option to prevent warmth and death, as determined by 
the application of equation (5). To escape from blockages and exhausting FF moves (SC transportations) and it 
is represented in equations (6-8).
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Where, Yj,k
u- representing k-th element of FF individual j in the u-th iteration. coolj,k- represents the k-th 

current position in the overall population related to an individual j. ∝ - Beneficial gravitation constant. rand is 
a random number in [0,1], mYj,k

u+1 is a modified position for next generation (u+1).
To forecast supplier dependability and demand changes, overheated FFs are relocated to the coolest node 

and replaced by younger, more adaptive ones, as described in equation (9).
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The variable m ranges from 2 to the entire number of SL, whereas SLl,k
u indicates the k-th element of the 

l-th individual in the SL of the u-th iteration.
Crowding is handled to predict supplier reliability and demand changes by replacing similar solutions with 

offspring or deleting underperforming ones using a probability model (equation 10-11).
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C1, C2 are two FF and N being an arbitrary number from 0 to 1. The random number is generated with a 50 
% chance, and if it exceeds the probability, the FF survives. If the number is odd, the remaining individual is 
removed. Algorithm 1 shows the FlyFO-ANN.

Algorithm 1: FlyFO-ANN
data = load_data(“supplier_dataset.csv”)
data = min_max_normalize(data)
features = apply_PCA(data)
ann = initialize_ANN(input_size, hidden_layers, output_size, activation=’tanh’)
population = initialize_population(num_ff, ann_hyperparams)
alpha = 0,5 
pa = 0,2   
max_iter = 100
for u in range(max_iter):
  for j in range(len(population)):
for k in range(hyperparam_dims):
      cool = get_best_solution(population)
      Y[j][k] = Y[j][k] + alpha * rand() * (cool[k] - Y[j][k])
      R1, R2 = select_random_indices(population)
mY = Y[j][k] + rand()*(cool[k] - Y[j][k]) + rand()*(Y[R1][k] - Y[R2][k])
      if k == random_index() or rand() >= pa:
        Y[j][k] = mY
  for j in overheated_indices:
    Y[j] = average_of_survivors(SL)
  for j in range(0, len(population), 2):
    if is_similar(Y[j], Y[j+1]):
      N = rand()
      offspring1 = N * Y[j] + (1 - N) * Y[j+1]
      offspring2 = N * Y[j+1] + (1 - N) * Y[j]
replace_or_eliminate(offspring1, offspring2, population)
  for ff in population:
ann.set_hyperparams(ff)
    fitness = ann.train_and_evaluate(features, labels)
update_best(ff, fitness)
best_ann = get_best_ann(population)
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RESULTS
This section clearly demonstrates the outperformance of the proposed and existing methods with figures 

and tables as well as system configuration.

Experimental Setup
The experimental setup was performed on a system with an Intel Core i7 processor, 32GB of RAM, running 

Windows 11 (64-bit). The implementation was achieved in Python using TensorFlow and Scikit-learn libraries. 
A Kaggle open-source supply chain dataset was used, and the simulations were all executed using FlyFO-ANN.

Evaluation Metrics
To assess the performance of the FlyFO-ANN model as a predictor of supplier reliability and demand 

variation, six key evaluation metrics were implemented. Accuracy is the model’s overall prediction correctness, 
indicating how often it accurately classifies supplier reliability. AUC (Area Under the Curve) measures model 
performance in distinguishing reliable and unreliable suppliers. Recall measures the model’s ability to identify 
all actual reliable suppliers, while precision measures the number of predicted reliable suppliers. F1 balances 
precision and recall, aiming to maximize both. Time (s) indicates model execution efficiency per iteration, 
particularly important in real-time supply-chain environments. These metrics validate the model’s robustness 
and operational capacity.

Figure 2 shows: (a) delivery modes are uniformly distributed across targets; (b) selected suppliers (flag 1) 
demonstrate higher on-time delivery performance; (c) quality scores are generally higher for selected suppliers, 
indicating better overall performance in key metrics.

Figure 2. Outcomes of (a) delivery mode count by target, (b) Swarmplot of an time delivery rate by target and (c) 
boxenplot of quality score by target
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Comparison Phase
The proposed method FlyFO-ANN is compared with the existing Random Forest, Extra Trees and CatBoost(16) 

based on the six evaluation metrics for supplier selection and efficiency.
Table 1 and figure 3-5 display the outcome of evaluation metrics. The proposed method obtains the greater 

values in accuracy (0,9233), recall (0,8815), AUC (0,9664), F1 (0,8923), and precision (0,9077), as well as lower 
time (0,005s) than existing methods for SC reliability, and demand fluctuations.

Table 1. Outcome of metrics

Methods Accuracy AUC Recall Precision F1 Time(s)

Random Forest(16) 0,8782 0,9328 0,8173 0,8318 0,8241 0,07

Extra Trees(16) 0,8721 0,9202 0,8129 0,8204 0,816 0,07

CatBoost(16) 0,8883 0,9389 0,8185 0,8566 0,8364 0,741

Proposed 0,9233 0,9664 0,8815 0,9077 0,8923 0,005

Figure 3. Outcome of accuracy, AUC, recall

Figure 4. Precision, and F1 for proposed vs existing models
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Figure 5. Time for existing vs proposed model

DISCUSSION
In SCM, traditional methods like Random Forest, Extra Trees, and CatBoost(16) have been employed for supplier 

evaluation but often suffer from limitations, such as poor adaptability to dynamic environments, sensitivity 
to noisy features, and increased processing time.(27,28,29,30) These limitations hinder real-time decision-making 
and efficient supplier selection. To address these challenges, the proposed FlyFO-ANN integrates DL with 
metaheuristic optimization to form a more adaptive and intelligent supply chain management framework. It 
enhances prediction accuracy, optimizes model parameters, and significantly reduces computational overhead. 
In the comparison phase, FlyFO-ANN demonstrated superior performance across all evaluation metrics, 
overcoming the existing methods’ weaknesses and establishing itself as a robust and scalable solution for 
supplier selection and operational efficiency in dynamic supply chain settings.(31,32)

CONCLUSIONS
Research presents a DL-based ISCM framework that effectively addresses the limitations of traditional static 

and rule-based approaches. The proposed method, FlyFO-ANN, integrates ANN with FlyFO to enhance supplier 
selection and demand forecasting. Experimental findings demonstrate notable improvements, achieving a rate 
of accuracy (0,9233), and reduced processing time of 0,005 seconds. Despite its effectiveness, the model 
requires high computational resources and is sensitive to data quality. Future research can focus on integrating 
real-time data streams, incorporating blockchain and IoT technologies, and improving interpretability through 
explainable AI to expand its applicability across diverse SCM environments.
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